CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation

نویسندگان

  • Minghui Tan
  • Caihui Cha
  • Yongheng Ye
  • Jifeng Zhang
  • Sumei Li
  • Fengming Wu
  • Sitang Gong
  • Guoqing Guo
چکیده

Cytoskeleton dynamics are critical phenomena that underpin many fundamental cellular processes. Collapsin response mediator proteins (CRMPs) are highly expressed in the developing nervous system, mediating growth cone guidance, neuronal polarity, and axonal elongation. However, whether and how CRMPs associate with microtubules and actin coordinated cytoskeletal dynamics remain unknown. In this study, we demonstrated that CRMP2 and CRMP4 interacted with tubulin and actin in vitro and colocalized with the cytoskeleton in the transition-zone in developing growth cones. CRMP2 and CRMP4 also interacted with one another coordinately to promote growth cone development and axonal elongation. Genetic silencing of CRMP2 enhanced, whereas overexpression of CRMP2 suppressed, the inhibitory effects of CRMP4 knockdown on axonal development. In addition, knockdown of CRMP2 or overexpression of truncated CRMP2 reversed the promoting effect of CRMP4. With the overexpression of truncated CRMP2 or CRMP4 lacking the cytoskeleton interaction domain, the promoting effect of CRMP was suppressed. These data suggest a model in which CRMP2 and CRMP4 form complexes to bridge microtubules and actin and thus work cooperatively to regulate growth cone development and axonal elongation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collapsin response mediator protein 4 regulates growth cone dynamics through the actin and microtubule cytoskeleton.

Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neuron...

متن کامل

CRMP2 tethers kainate receptor activity to cytoskeleton dynamics during neuronal maturation.

The CRMP2 and CRMP4 proteins are strongly expressed in the developing nervous system, mediating neurite outgrowth, neuronal polarity, and axon guidance. In the present study, we demonstrate the interaction of the CRMP2 and CRMP4 proteins with the GluK5 subunit of the kainate (KA) receptor (KAR) and investigated the role of KARs in modulating the development of cultured mouse DRG neurons. We fou...

متن کامل

CNP/cGMP signaling regulates axon branching and growth by modulating microtubule polymerization.

The peptide hormone CNP has recently been found to positively regulate axon branching and growth via activation of cGMP signaling in embryonic dorsal root ganglion (DRG) neurons, but the cellular mechanisms mediating the regulation of these developmental processes have not been established. In this study, we provide evidence linking CNP/cGMP signaling to microtubule dynamics via the microtubule...

متن کامل

Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition.

Myelin-associated inhibitors (MAIs) and chondroitin sulfate proteoglycans (CSPGs) contribute to failed regeneration after neuronal injury. MAIs and CSPGs stimulate intracellular signals including the activation of RhoA and Rho kinase to block axonal extension through targeted modifications to the cytoskeleton. RhoA and ROCK are promising targets for therapeutic intervention to promote CNS repai...

متن کامل

BDNF/trkB Induction of Calcium Transients through Cav2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221)

Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015